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Thesis Project, First Description

My Thesis Project, Broadly Speaking

I intend to apply tools and techniques from resurgent
asymptotics to fractal (& spectral) geometry.

My main focus is
on empowering/better understanding explicit formulae that
relate geometric or spectral functions to poles of an associated
zeta function, looking for situations where new phenomena
might manifest.

To understand this better, we shall discuss:

Fractal Geometry

Resurgent Asymptotics

Explicit Formulae
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Fractals



Fractal Geometry and Geometric Oscillations

Fractals, heuristically speaking, are objects with irregular or
intricate detail at all length scales, usually with some (possibly
approximate form of) self-similarity.

M. L. Lapidus and collaborators have studied geometric
oscillations of fractals using fractal zeta functions. The poles of
these associate zeta functions describe such oscillations, and
have been dubbed complex dimensions.

Properties of the fractal can be expressed in terms of these
complex dimensions, such as the volume of a neighborhood
within a certain distance of the fractal.
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Example: The Cantor Set

The standard middle-thirds Cantor set:

At the nth stage, 2n−1 intervals of length 3−n are removed.

The fractal zeta function ζCS is given by:

ζCS(s) =
∞∑
n=1

2n−1∑
k=1

(
1

3n

)s
=
∞∑
n=1

2n−1

3ns
=

1

3s − 2
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Fractal String and Zeta Function

Let Ω be a bounded open set in R; then Ω may be written as a
countable union of open intervals.

Let L = {`n}n∈N denote the set of lengths of these intervals,
repeated with multiplicity. L is called a fractal string.

The zeta function associated to L is given by:

ζL(s) =
∞∑
n=1

`sn
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Ordinary Fractal String as a Measure

An ordinary fractal string L = {`n}n∈N may be represented as a
measure: 1

µL =

∞∑
j=1

δ{`−1
j }

The zeta function is then given by:

ζL(s) =

� ∞
0

x−sdµL(x)

This construction works for any sufficiently nice measure, not
just those from fractal strings.

1By convention, we center the point masses at reciprocal lengths.
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Generalized Fractal String

Definition

A generalized fractal string is a local positive or complex
measure η defined on (0,∞).2 We also stipulate that η has no
mass near zero, i.e. there exists a positive number x0 for which
|η|[(0, x0)] = 0, where |η| denotes the variation of η.

The associated counting function:

Nη(x) =

� x

0
dη

The associated zeta function:

ζη(s) =

� ∞
0
x−sdη(x)

2In particular, η is a Borel measure whose restriction to compact sets
has bounded variation.
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More on the Counting Function

Ordinary Counting Function

The geometric counting function of an ordinary fractal
string L:

NL(x) :=

� x

0
dµL =

∑
`−1
n ≤x

1

counts the number of reciprocal lengths up to the input.*

*By convention, the counting function at jump discontinuities is
defined to be the average of the lateral limits.

For a general measure η, we write:

Nη(x) =

� x

0
dη = η

(
(0, x)

)
+

1

2
η({x})
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Zeta Functions and Complex Dimensions

The poles of a zeta function ζη are complex dimensions.

Cantor String:

ζCS(ω) =
1

3ω − 2
=∞⇐⇒ ω = log3(2) + i

2πk

log(3)

Golden String:

ζGS(ω) =
1

1− 2−ω − 2−ϕω
=∞⇐⇒ 2−ω + 2−ϕω = 1
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Complex Dimensions Plotted
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Namesake: Riemann’s Explicit Formula

Let f(x) denote the prime power counting function, and ζ(s)
the Riemann zeta function. In particular:

f(x) =

∞∑
n=1

1

n
π(x1/n)

where π is the (normalized) prime counting function.

Riemann wrote the formula (proved later by von Mangoldt):

f(x) = Li(x)−
∑
ρ

Li(xρ) +

� ∞
x

1

x2 − 1

dx

x log x
− log 2

where the sum is taken over critical zeroes, in order of
increasing imaginary part magnitude. 3

3

See [Edw74] for more detail.
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Explicit Formula via Complex Dimensions

Pointwise E.F., with Error (Thm 5.10 in [LvF13])

Let η be a languid generalized fractal string, k a sufficiently
large positive integer, 4 and Dη(W ) the visible complex fractal
dimensions of η in the window W to the right of screen S. Then
for all x > 0,

N [k]
η (x) =

∑
ω∈Dη(W )

res

(
xs+k−1ζη(s)

(s)k
;ω

)

+
1

(k − 1)!

k−1∑
j=0

−j∈W\Dη

(
k − 1
j

)
(−1)jxk−1−jζη(−j)

+O
(
xsup Re(S)+k−1

)
4Specifically, k > max{1, κ+ 1}, where κ is from the languid growth

conditions to be defined on the next slide.



Explicit Formula Notes

Strongly languid strings, satisfying a stricter growth
condition, satisfy the formula with no error term on an
interval (A,∞) with A > 0.

These formulae can be established for any k when
considered in the distributional sense.

Explicit formulae can also been established for other
functions such as geometric tube functions.
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Asymptotic Expansions

We say f(z) ∼
∑∞

n=1 an
1
zn as z →∞ provided that each partial

sum truncation is an approximation to f with error on the
order of the next term in the series.

Equivalent definitions: As z →∞,

f(z) ∼
∞∑
n=1

an
1

zn

f(z) =
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1

zn
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Asymptotic Expansion Examples

Stirling’s series:

log(Γ(x)) ∼
(
x− 1

2

)
log(x)− x+

1

2
log(2π)

+

∞∑
j=1

B2j

2j(2j − 1)
x−2j+1, x→∞

Sine & non-uniqueness

sin(z) ∼
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
∼ sin(z) + e−1/z, z → 0+

Non-example (a simple transseries)

∞∑
k=0

x−k

k!
+ e−x, x→ +∞
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Stokes Phenomenon

The Stokes phenomenon, broadly speaking, is that asymptotic
expansions may change behavior in the complex plane.

On key feature is that as the complex phase changes, small or
“invisible” terms not in the asymptotic expansion may become
dominant/important.

Transseries are a broader class of series that can contain all of
the important terms. We make sense of them via stronger Borel
resummation techniques.
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Supernumerary Bows & The Airy Function



Airy Function & Stokes Phenomenon

The Airy function has two different asymptotic expansions.
To first order:

(−z)−
1
4√

π
sin

(
2
3
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3
2 +π

4

)

Ai(z)

z−
1
4

2
√
π
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2
3
z
3
2

| arg(−z)| < 2π
3

(Entire)

| arg(z)| < π
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Airy Function Expansion

The Airy function is governed by the asymptotic expansion:

ϕAi(z) =

∞∑
n=0

an
zn

=

∞∑
n=0

(
−3

4

)n Γ(n+ 1
6)Γ(n+ 5

6)

2πΓ(n+ 1)

1

zn

Ai(k) ∼ 1

2
√
π
k−

1
4 e−

2
3
k
3
2 ϕAi(k

3
2 )

More remarks:

ϕAi is factorially divergent.

z = k
3
2 is a natural change of variables for ensuing

resummation.
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Borel Summation

The goal is to resum formal asymptotic expansions, or more
strongly transseries expansions.

For factorially divergent expansions, we may Borel transform,
resum, and Laplace transform back.

As it turns out, this process can recover important information.

Key Steps:

Borel Transform

Analytic Continuation in the Borel Plane

Dealing with Singularities

Laplace Transform Back
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Borel Summation: Schematic



Borel Summation: Example



Borel Summation: Further Discussion

Borel summation is the starting point for a larger field we dub
resurgent asymptotics.

A fuller resummation process can handle rotating the contour
for the Laplace transform back, as well as singularities that may
be encountered along such contours.

For example, if we chose ϕ̃(z) =
∑∞

n=0 n!z−(n+1), its Borel
transform would have a a singularity at +1, preventing an
ordinary Laplace transform.



Borel Summation: Further Discussion

Borel summation is the starting point for a larger field we dub
resurgent asymptotics.

A fuller resummation process can handle rotating the contour
for the Laplace transform back, as well as singularities that may
be encountered along such contours.

For example, if we chose ϕ̃(z) =
∑∞

n=0 n!z−(n+1), its Borel
transform would have a a singularity at +1, preventing an
ordinary Laplace transform.



Borel Summation: Further Discussion

Borel summation is the starting point for a larger field we dub
resurgent asymptotics.

A fuller resummation process can handle rotating the contour
for the Laplace transform back, as well as singularities that may
be encountered along such contours.

For example, if we chose ϕ̃(z) =
∑∞

n=0 n!z−(n+1), its Borel
transform would have a a singularity at +1, preventing an
ordinary Laplace transform.



Airy Series: Borel Summation

The minor of ϕAi is its (formal) Borel transform, forgetting
the constant term:
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A Borel Resummed Expansion

Where before:

Ai(k)∼ 1
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This resummation is valid for | arg(k)| < π
3 , |k| > 0.

One can rotate the direction of summation for new regions of
validity.



A Borel Resummed Expansion

Where before:

Ai(k)∼ 1

2
√
π
k−

1
4 e−

2
3
k
3
2 ϕAi(k

3
2 )

We now have:

Ai(k)=
1

2
√
π
k−

1
4 e−

2
3
k
3
2 S0ϕAi(k

3
2 )

This resummation is valid for | arg(k)| < π
3 , |k| > 0.

One can rotate the direction of summation for new regions of
validity.



A Borel Resummed Expansion

Where before:

Ai(k)∼ 1

2
√
π
k−

1
4 e−

2
3
k
3
2 ϕAi(k

3
2 )

We now have:

Ai(k)=
1

2
√
π
k−

1
4 e−

2
3
k
3
2 S0ϕAi(k

3
2 )

This resummation is valid for | arg(k)| < π
3 , |k| > 0.

One can rotate the direction of summation for new regions of
validity.



Transseries Short Introduction

A transseries starts as a formal asymptotic series, but allowing
for multiple levels of exponentials and logarithms. They arise as
a closure of power series under algebraic and differential
operations.

These (summable) transseries are in correspondence with
analytic germs of so-called analyzable functions. These
functions are, loosely speaking, Borel transforms of
at-most-factorially divergent asymptotic expansions which can
be analytically continued in the Borel plane.
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Resurgent Functions

(Provisional) Definition

Resurgent functions are formal power series whose Borel
transform corresponds to germs of analytic functions which can
be analytically continued in the Borel plane.

These functions form an algebra with addition and
multiplication (the latter becoming convolution in the Borel
plane.)
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Behavior of Singularities

Ordinary Borel summation succeeds when there are no
singularities on the positive real line, or more generally the
desired angle ray from zero to infinity.

When there are singularities, an extra Hankel contour can be
introduced to connect integrals along a ray above or below the
singularity. The machinery of resurgent asymptotics involves an
operator that relates the behavior of these two contours. This
so-called alien derivative connects the behavior of the analytic
germ near the origin to the behavior near other singular points.
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Airy Function Resummation along R−

Depiction from [Del06]:



Alien Calculus & Behavior across the Singularity

The Hankel contour γ can be expressed using the so-called alien
derivative: �

γ
ϕ̃Ai(ζ)e−zζdζ = e+ 4

3
zS−π

(
∆z
− 4

3
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)
(z)

In this case,
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− 4

3

ϕAi = −iϕBi, ϕBi(z) :=
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n=0

(−1)n
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ϕBi is also Gevrey-1 and its minor ϕ̃Bi extends analytically to
the universal cover of C \

{
0,+4

3

}
.

More on the Airy Function.
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Namesake: Resurgence

Écalle on coining “Resurgence”

[Alien derivatives] enable us to describe, by means of so-called resurgence

equations of the form Eω(
O

φ,∆ω

O

φ) ≡ 0, the very close connection which
usually exists between the behavior of φ̂(ζ) near 0• and near its other
singular points ω.

This self-reproduction property is an outstanding feature of all resurgent
functions of natural origin (their birth-mark, as it were!) and it is precisely
what the label “resurgence” (bestowed somewhat promiscuously on the

whole algebra
O

RES) is meant to convey.
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My Thesis Project, Second Description

My Thesis Project, More Specifically

I intend to study explicit formulae which admit analytic
continuation in the complex plane, and to determine where and
why their asymptotics may change (cf. Stokes phenomena.)

In
such scenarios, I aim to find more complete descriptions or any
“missing” terms that become relevant. To acheive these goals, I
intend to use (enhanced) Borel summation, transseries, and
other tools in resurgent analysis.

Scenarios where transseries and Borel resummation have been
applied to fractal geometry:

Transseries formulae have been useful in describing
quasi-disk Julia sets.

Resummation can extend some lacunary Dirichlet series
possessing natural boundaries.
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Some Observations

One aspect of resurgence is that behavior near singularities
is connected to behavior near the origin. Exploring this
more precisely and considering

Explicit formulae relate counting functions to complex
dimensions. Therefore, “missing” terms ought to relate to
appropriate features of the corresponding zeta function.

Exact formulae are not expected candidates for extended
expansions. On the other hand, divergent expressions,
natural boundaries, and other “at worst factorially
intractible” behaviors are likely candidates for resurgent
properties.

Discrete measures have piecewise constant counting
functions, so we do not expect them to have analytically
continuable explicit formulae expansions.
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Notable Applications of Resurgent Asymptotics

Dulac’s Conjecture

On finiteness of limit cycles; related to Hilbert’s 16th

problem

Écalle’s proof relies on resurgent functions

Quantum Field Theory

Exponentially small, non-analytic corrections to
perturbative expansions (“instantons”)

Potential to recovering nonperturbative effects through
resurgence of a perturbative expansion



More Applications in Mathematical Physics

Normal forms of dynamical systems

Gauge theory of singular connections

Quantization of symplectic and Poisson manifolds

Floer homology and Fukaya categories

Knot invariants

Wall-crossing and stability conditions in algebraic geometry

Spectral networks

WKB approximation in quantum mechanics

Non-linear differential equations and asymptotics



Explicit Formulae: Proof of the Prime Number Theorem

A Formula for the Riemann Zeta Function

Let ζ be the Riemann zeta function; it is strongly languid with
k = 0 and A = 1. Denote by P =

∑
m≥1,p(log p)δ{pm} the

geometric zeta function of the prime string. Then for all x > 1,
(in a distributional sense,)

P = 1−
∑
ρ

xρ−1 +
∞∑
n=1

x−(2n+1)

This formula can be used to derive the following formula for the
prime counting function π, and thus the prime number theorem.

π(x) = Li(x) +O(xe−c
√

log x)



End of Presentation

Thank you for listening!
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Appendix: Languid Growth Conditions

Let S denote the screen for ζη, viz. S = {s(t) + it : t ∈ R}.

Let {Tn}n∈Z be a two sided sequence with:
Tn>0 ↗∞, Tn<0 ↘ −∞, and Tn ∼ |T−n| as n→∞.

Let κ and C be positive constants.

Polynomial growth on a sequence of horizontal lines (L1)

∀n ∈ Z,∀σ ≥ s(Tn), |ζη(σ + iTn)| ≤ C(|Tn|+ 1)κ

Polynomial growth along the given screen (L2)

∀t ∈ R, |t| ≥ 1, |ζη(s(t) + it)| ≤ |t|κ

Return to pointwise explicit formula with error term.
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Appendix: Airy Function on R−

Deducing the behavior Ai for negative real inputs.

Airy expansion when | arg(k)− π| < π
3 , z = k

3
2 :

Ai(k) =
1

2
√
π
k−

1
4

(
e−

2
3
zS− 3π

2
ϕAi(z) + ie+ 2

3
zS− 3π

2
ϕBi(z)

)
Note the new exponential term that appeared.

Once can rewrite the LHS as the resummed version of the
second expansion we saw previously.

Return to Airy Resummation.
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